Solve this

Question:

If $\frac{1}{6 !}+\frac{1}{7 !}=\frac{x}{8 !^{\prime}}$, find the value of $x$

 

Solution:

Given Equation :

$\frac{1}{6 !}+\frac{1}{7 !}=\frac{x}{8 !}$

To Find : Value of x

Formula: $n !=n \times(n-1) !$

By given equation

$\frac{1}{6 !}+\frac{1}{7 !}=\frac{x}{8 !}$

$\therefore \frac{8 \times 7}{8 \times 7 \times 6 !}+\frac{8}{8 \times 7 !}=\frac{x}{8 !}$

By using the above formula we can write,

$\therefore \frac{56}{8 !}+\frac{8}{8 !}=\frac{x}{8 !}$

$\therefore \frac{64}{8 !}=\frac{x}{8 !}$

Cancelling (8!) from both the sides,

$\therefore \mathrm{x}=64$

Conclusion : Value of x is 64.

 

Leave a comment