Question:
$\sqrt{-8i}$
Solution:
Let, $(a+i b)^{2}=0-8 i$
Now using, $(a+b)^{2}=a^{2}+b^{2}+2 a b$
$\Rightarrow a^{2}+(b i)^{2}+2 a b i=0-8 i$
Since $i^{2}=-1$
$\Rightarrow a^{2}-b^{2}+2 a b i=0-8 i$
Now, separating real and complex parts, we get
$\Rightarrow a^{2}-b^{2}=0$ ………..eq.1
$\Rightarrow 2 \mathrm{ab}=-8 \ldots \ldots \ldots$ eq. 2
$\Rightarrow \mathrm{a}=-\frac{4}{b}$
Now, using the value of a in eq.1, we get
$\Rightarrow\left(-\frac{4}{b}\right)^{2}-b^{2}=0$
$\Rightarrow 16-b^{4}=0$
$\Rightarrow b^{4}=16$
Simplify and get the value of $b^{2}$, we get,
$\Rightarrow b^{2}=-4$ or $b^{2}=4$
As $b$ is real no. so, $b^{2}=4$
$b=2$ or $b=-2$
Therefore, $a=-2$ or $a=2$
Hence the square root of the complex no. is $-2+2 i$ and $2-2 i$.