If $y^{x}+x^{y}+x^{x}=a^{b}$, find $\frac{d y}{d x}$.
Given that, $y^{x}+x^{y}+x^{x}=a^{b}$
Putting, $u=y^{x}, v=x^{y}, w=x^{x}$, we get
$u+v+w=a^{b}$
Therefore, $\frac{d u}{d x}+\frac{d v}{d x}+\frac{d w}{d x}=0$ .......(i)
Now, $u=y^{x}$,
Taking log on both sides, we have
$\log u=x \log y$b
Differentiating both sides with respect to $x$, we have
$=x \frac{1}{y} \cdot \frac{d y}{d x}+\log y \cdot 1$
So, $\frac{d u}{d x}=u\left(\frac{x}{y} \frac{d y}{d x}+\log y\right)$
$=y^{x}\left[\frac{x}{y} \frac{d y}{d x}+\log y\right] \ldots \ldots$(2)
Also, $\mathrm{V}=\mathrm{X}^{y}$,
Taking log on both sides, we have
$\log v=y \log x$
Differentiating both sides with respect to $x$, we have
$\frac{1}{v} \frac{d v}{d x}=y \frac{d}{d x}(\log x)+\log x \frac{d y}{d x}$
$=y \frac{1}{x}+\log x \frac{d y}{d x}$
So, $\frac{d v}{d x}=v\left(\frac{y}{x}+\log x \frac{d y}{d x}\right)$
$=x^{y}\left[\frac{y}{x}+\log x \frac{d y}{d x}\right] \ldots \ldots$ (iii)
Again, $w=x^{x}$,
Taking log on both sides, we have
$\log w=x \log x$
Differentiating both sides with respect to $x$, we have
$\frac{1}{w} \frac{d w}{d x}=x \frac{d}{d x}(\log x)+\log x \frac{d x}{d x}$
$=x \cdot \frac{1}{x}+\log x \cdot 1$
So, $\frac{\mathrm{dw}}{\mathrm{dx}}=\mathrm{w}(1+\log \mathrm{x})$
$=x^{x}[1+\log x] \ldots \ldots$ (iv)
From (i), (ii), (iii), (iv)
$\frac{d u}{d x}+\frac{d v}{d x}+\frac{d w}{d x}=0$
$y^{x}\left[\frac{x}{y} \frac{d y}{d x}+\log y\right]+x^{y}\left[\frac{y}{x}+\log x \frac{d y}{d x}\right]+x^{x}[1+\log x]=0$
$\left(x y^{x-1}+x^{y} \cdot \log x\right) \frac{d y}{d x}=-x^{x}(1+\log x)-y \cdot x^{y-1}-y^{x} \log y$
Therefore,
$\frac{d y}{d x}=\frac{-\left[x^{x}(1+\log x)+y \cdot x^{y-1}+y^{x} \log y\right]}{\left(x y^{x-1}+x^{y} \cdot \log x\right)}$