Question:
$\frac{2}{x^{2}}-\frac{5}{x}+2=0$
Solution:
Given:
$\frac{2}{x^{2}}-\frac{5}{x}+2=0$
$\Rightarrow 2-5 x+2 x^{2}=0 \quad$ [Multiplying both side by $\left.x^{2}\right]$
$\Rightarrow 2 x^{2}-5 x+2=0$
$\Rightarrow 2 x^{2}-(4 x+x)+2=0$
$\Rightarrow 2 x^{2}-4 x-x+2=0$
$\Rightarrow 2 x(x-2)-1(x-2)=0$
$\Rightarrow(2 x-1)(x-2)=0$
$\Rightarrow 2 x-1=0$ or $x-2=0$
$\Rightarrow x=\frac{1}{2}$ or $x=2$
Hence, the roots of the equation are $\frac{1}{2}$ and 2 .