Solve this

Question:

If $\sum_{r=1}^{50} \tan ^{-1} \frac{1}{2 r^{2}}=p$, then the value of $\tan p$ is :

  1. $\frac{101}{102}$

  2. $\frac{50}{51}$

  3. 100

  4. $\frac{51}{50}$


Correct Option: , 2

Solution:

$\sum_{r=1}^{50} \tan ^{-1}\left(\frac{2}{4 r^{2}}\right)=\sum_{r=1}^{50} \tan ^{-1}\left(\frac{(2 r+1)-(2 r-1)}{1+(2 r+1)(2 r-1)}\right)$

$\sum_{r=1}^{50} \tan ^{-1}(2 r+1)-\tan ^{-1}(2 r-1)$

$\tan ^{-1}(101)-\tan ^{-1} 1 \Rightarrow \tan ^{-1} \frac{50}{51}$

Leave a comment