Solve this

Question:

Solve: $\cos \left\{2 \sin ^{-1}(-x)\right\}=0$

Solution:

Given,

$\cos \left\{2 \sin ^{-1}(-x)\right\}=0$

$\Rightarrow \cos \left(-2 \sin ^{-1} x\right)=0$                           $\left[\because \sin ^{-1}(-\theta)=-\sin ^{-1} \theta\right]$

$\Rightarrow \cos \left(2 \sin ^{-1} x\right)=0$                            $[\because \cos (-\theta)=\cos \theta]$

We know, $-\frac{\pi}{2} \leq \sin ^{-1} \theta \leq \frac{\pi}{2}$

Therefore, $2 \sin ^{-1} x=\pm \frac{\pi}{2}$

$\Rightarrow \sin ^{-1} x=\pm \frac{\pi}{4}$

$\Rightarrow x=\pm \frac{1}{\sqrt{2}}$

 

Leave a comment