Question:
$\sin x=\frac{2 t}{1+t^{2}}, \tan y=\frac{2 t}{1-t^{2}}$, find $\frac{d y}{d x}$
Solution:
$\sin x=\frac{2 t}{1+t^{2}}$ and $\tan y=\frac{2 t}{1-t^{2}}$
$\Rightarrow x=\sin ^{-1} \frac{2 t}{1+t^{2}}$ and $y=\tan ^{-1} \frac{2 t}{1-t^{2}}$
$\Rightarrow x=2 \tan ^{-1} t$ and $y=2 \tan ^{-1} t$
$\Rightarrow \frac{d x}{d t}=\frac{2 t}{1+t^{2}}$ and $\frac{d y}{d t}=\frac{2 t}{1+t^{2}}$
$\therefore \frac{d y}{d x}=\frac{\frac{d y}{d t}}{\frac{d x}{d t}}=\frac{\frac{2 t}{1+t^{2}}}{\frac{2 t}{1+t^{2}}}=1$