Solve this

Question:

The matrix $A=\left[\begin{array}{ccc}0 & -5 & 8 \\ 5 & 0 & 12 \\ -8 & -12 & 0\end{array}\right]$ is a

(a) diagonal matrix

(b) symmetric matrix

(c) skew-symmetric matrix

(d) scalar matrix

Solution:

Given: $A=\left[\begin{array}{ccc}0 & -5 & 8 \\ 5 & 0 & 12 \\ -8 & -12 & 0\end{array}\right]$

$A^{T}=\left[\begin{array}{ccc}0 & -5 & 8 \\ 5 & 0 & 12 \\ -8 & -12 & 0\end{array}\right]^{T}$

$=\left[\begin{array}{ccc}0 & 5 & -8 \\ -5 & 0 & -12 \\ 8 & 12 & 0\end{array}\right]$

$=-1\left[\begin{array}{ccc}0 & -5 & 8 \\ 5 & 0 & 12 \\ -8 & -12 & 0\end{array}\right]$

$=-A$

Therefore, matrix $A$ is skew-symmetric matrix.

Hence, the correct option is (c).

Leave a comment