Question:
The matrix $A=\left[\begin{array}{ccc}0 & -5 & 8 \\ 5 & 0 & 12 \\ -8 & -12 & 0\end{array}\right]$ is a
(a) diagonal matrix
(b) symmetric matrix
(c) skew-symmetric matrix
(d) scalar matrix
Solution:
Given: $A=\left[\begin{array}{ccc}0 & -5 & 8 \\ 5 & 0 & 12 \\ -8 & -12 & 0\end{array}\right]$
$A^{T}=\left[\begin{array}{ccc}0 & -5 & 8 \\ 5 & 0 & 12 \\ -8 & -12 & 0\end{array}\right]^{T}$
$=\left[\begin{array}{ccc}0 & 5 & -8 \\ -5 & 0 & -12 \\ 8 & 12 & 0\end{array}\right]$
$=-1\left[\begin{array}{ccc}0 & -5 & 8 \\ 5 & 0 & 12 \\ -8 & -12 & 0\end{array}\right]$
$=-A$
Therefore, matrix $A$ is skew-symmetric matrix.
Hence, the correct option is (c).