If $\left|\begin{array}{lll}2-x & 2+x & 2+x \\ 2+x & 2-x & 2+x \\ 2+x & 2+x & 2-x\end{array}\right|=0$, then $x=$
Given: $\left|\begin{array}{lll}2-x & 2+x & 2+x \\ 2+x & 2-x & 2+x \\ 2+x & 2+x & 2-x\end{array}\right|=0$
$\left|\begin{array}{lll}2-x & 2+x & 2+x \\ 2+x & 2-x & 2+x \\ 2+x & 2+x & 2-x\end{array}\right|=0$
Applying $R_{2} \rightarrow R_{2}-R_{1}$
$\Rightarrow\left|\begin{array}{ccc}2-x & 2+x & 2+x \\ 2+x-2+x & 2-x-2-x & 2+x-2-x \\ 2+x & 2+x & 2-x\end{array}\right|=0$
$\Rightarrow\left|\begin{array}{ccc}2-x & 2+x & 2+x \\ 2 x & -2 x & 0 \\ 2+x & 2+x & 2-x\end{array}\right|=0$
Taking $(2 x)$ common from $R_{2}$
$\Rightarrow(2 x)\left|\begin{array}{ccc}2-x & 2+x & 2+x \\ 1 & -1 & 0 \\ 2+x & 2+x & 2-x\end{array}\right|=0$
Applying $R_{3} \rightarrow R_{3}-R_{1}$
$\Rightarrow(2 x)\left|\begin{array}{ccc}2-x & 2+x & 2+x \\ 1 & -1 & 0 \\ 2+x-2+x & 2+x-2-x & 2-x-2-x\end{array}\right|=0$
$\Rightarrow(2 x)\left|\begin{array}{ccc}2-x & 2+x & 2+x \\ 1 & -1 & 0 \\ 2 x & 0 & -2 x\end{array}\right|=0$
Taking $(2 x)$ common from $R_{3}$
$\Rightarrow(2 x)^{2}\left|\begin{array}{ccc}2-x & 2+x & 2+x \\ 1 & -1 & 0 \\ 1 & 0 & -1\end{array}\right|=0$
$\Rightarrow(2 x)^{2}\left|\begin{array}{ccc}2-x & 2+x & 4 \\ 1 & -1 & 1 \\ 1 & 0 & 0\end{array}\right|=0$
Expanding through $R_{3}$
$\Rightarrow(2 x)^{2}[(1)((2+x)(1)+4)]=0$
$\Rightarrow(2 x)^{2}[(2+x+4)]=0$
$\Rightarrow(2 x)^{2}(x+6)=0$
$\Rightarrow(2 x)^{2}=0$ or $(6+x)=0$
$\Rightarrow x=0$ or $x=-6$
Hence, $x=\underline{0}, \underline{-6}$.