(i) If ${ }^{n} C_{7}={ }^{n} C_{5}$, find $n$.
(ii) If ${ }^{n} C_{14}={ }^{n} C_{16}$, find ${ }^{n} C_{28}$.
(iii) If ${ }^{n} C_{16}={ }^{n} C_{14}$, find ${ }^{n} C_{27}$.
(i) Given: ${ }^{n} C_{7}={ }^{n} C_{5}$
To find : $\mathrm{n}=?$
We know that:
${ }^{n} \mathrm{C}_{r}={ }^{n} \mathrm{C}_{n-r}$
$\Rightarrow{ }^{n} C_{7}={ }^{n} C_{n-7}$
$\Rightarrow{ }^{n} C_{n-7}={ }^{n} C_{5}$
$\Rightarrow n-7=5$
$\Rightarrow \mathrm{n}=7+5=12$
Ans: $\mathrm{n}=12$
(ii) Given: ${ }^{n} C_{14}={ }^{n} C_{16}$
To find: ${ }^{n} C_{28}=?$
We know that
${ }^{n} \mathrm{C}_{r}={ }^{n} \mathrm{C}_{n-r}$
$\Rightarrow{ }^{n} C_{14}={ }^{n} C_{n-14}$
$\Rightarrow{ }^{n} C_{n-14}={ }^{n} C_{16}$
$\Rightarrow n-14=16$
$\Rightarrow n=16+14=30$
$\Rightarrow n=30$
So,
${ }^{\mathrm{n}} \mathrm{C}_{28}={ }^{30} \mathrm{C}_{28}$
$\Rightarrow{ }^{30} \mathrm{C}_{28}=\frac{30 !}{(30-28) ! \times 28 !}$
$\Rightarrow{ }^{30} \mathrm{C}_{28}=\frac{30 !}{2 ! \times 28 !}$
$\Rightarrow{ }^{30} \mathrm{C}_{28}=\frac{30 \times 29 \times 28 !}{2 ! \times 28 !}$
$\Rightarrow{ }^{30} \mathrm{C}_{28}=\frac{30 \times 29}{2 !}$
$\Rightarrow{ }^{30} \mathrm{C}_{28}=\frac{30 \times 29}{2 \times 1}$
$\Rightarrow{ }^{30} \mathrm{C}_{28}=435$
Ans: ${ }^{30} \mathrm{C}_{28}=435$
(iii) Given: ${ }^{n} C_{16}={ }^{n} C_{14}$
To find: ${ }^{n} \mathrm{C}_{27}=?$
We know that:
${ }^{n} C_{r}={ }^{n} C_{n-r}$
$\Rightarrow{ }^{n} C_{14}={ }^{n} C_{n-14}$
$\Rightarrow{ }^{n} C_{n-14}={ }^{n} C_{16}$
$\Rightarrow n-14=16$
$\Rightarrow n=16+14=30$
$\Rightarrow n=30$
So,
${ }^{n} C_{27}={ }^{30} C_{27}$
$\Rightarrow{ }^{30} \mathrm{C}_{27}=\frac{30 !}{(30-27) ! \times 27 !}$
$\Rightarrow{ }^{30} \mathrm{C}_{27}=\frac{30 !}{3 ! \times 27 !}$
$\Rightarrow{ }^{30} \mathrm{C}_{27}=\frac{30 \times 29 \times 28 \times 27 !}{3 ! \times 27 !}$
$\Rightarrow{ }^{30} \mathrm{C}_{27}=\frac{30 \times 29 \times 28}{3 !}$
$\Rightarrow{ }^{30} \mathrm{C}_{27}=\frac{30 \times 29 \times 28}{3 \times 2 \times 1}$
$\Rightarrow{ }^{30} \mathrm{C}_{27}=4060$
Ans: ${ }^{30} \mathrm{C}_{27}=4060$