Solve this

Question:

If the matrix $A=\left[\begin{array}{lll}1 & a & 2 \\ 1 & 2 & 5 \\ 2 & 1 & 1\end{array}\right]$ is not invertible, than $a=$

Solution:

Given: $A=\left[\begin{array}{lll}1 & a & 2 \\ 1 & 2 & 5 \\ 2 & 1 & 1\end{array}\right]$

$A$ is not invertible if $|A|=0$.

$\left|\begin{array}{lll}1 & \alpha & 2 \\ 1 & 2 & 5 \\ 2 & 1 & 1\end{array}\right|=0$

$\Rightarrow 1(2-5)-1(\alpha-2)+2(5 \alpha-4)=0$

$\Rightarrow 1(-3)-1 \alpha+2+10 \alpha-8=0$

$\Rightarrow-3-\alpha+2+10 \alpha-8=0$

$\Rightarrow 9 \alpha-9=0$

$\Rightarrow 9 \alpha=9$

$\Rightarrow \alpha=1$

Hence, if the matrix $A=\left[\begin{array}{lll}1 & a & 2 \\ 1 & 2 & 5 \\ 2 & 1 & 1\end{array}\right]$ is not invertible, than $a=1$.

Leave a comment