Solve this

Question:

If $A=\left[\begin{array}{cc}\ln x & -1 \\ -\ln x & 2\end{array}\right]$ and if $\operatorname{det}(A)=2$, then $x=$ _______

Solution:

Given:

$A=\left[\begin{array}{cc}\ln x & -1 \\ -\ln x & 2\end{array}\right]$

$\operatorname{det}(A)=2$

Now,

$|A|=2$

$\Rightarrow\left|\begin{array}{cc}\ln x & -1 \\ -\ln x & 2\end{array}\right|=2$

$\Rightarrow 2 \ln x-\ln x=2$

$\Rightarrow \ln x=2$

$\Rightarrow x=\mathrm{e}^{2}$

Hence, $x=\underline{e}^{2}$.

Leave a comment