If $\sin x=\frac{\sqrt{5}}{3}$ and $\frac{\pi}{2} (i) $\sin \frac{x}{2}$ (ii) $\cos \frac{x}{2}$ (iii) $\tan \frac{\mathrm{x}}{2}$
Given: $\sin x=\frac{\sqrt{5}}{3}$ and $\frac{\pi}{2} To Find: i) $\sin \frac{x}{2}$ ii) $\cos \frac{x}{2}$ iii) $\tan \frac{x}{2}$ Now, since $\sin x=\frac{\sqrt{5}}{3}$ We know that $\cos x=\pm \sqrt{1-\sin ^{2} x}$ $\cos x=\pm \sqrt{1-\left(\frac{\sqrt{5}}{3}\right)^{2}}$ $\cos x=\pm \sqrt{1-\frac{5}{9}}$ $\cos x=\pm \sqrt{\frac{4}{9}}=\pm \frac{2}{3}$ since $\cos x$ is negative in II quadrant, hence $\cos x=-\frac{2}{3}$ i) $\sin \frac{x}{2}$ Formula used: $\sin \frac{x}{2}=\pm \sqrt{\frac{1-\cos x}{2}}$ Now, $\sin \frac{x}{2}=\pm \sqrt{\frac{1-\left(\frac{-2}{3}\right)}{2}}=\pm \sqrt{\frac{\frac{5}{3}}{2}}=\pm \sqrt{\frac{5}{6}}$ Since sinx is positive in II quadrant, hence $\sin ^{\frac{x}{2}}=\sqrt{\frac{5}{6}}$ ii) $\cos \frac{x}{2}$ Formula used: $\cos \frac{x}{2}=\pm \sqrt{\frac{1+\cos x}{2}}$ now, $\cos \frac{x}{2}=\pm \sqrt{\frac{1+\left(\frac{-2}{3}\right)}{2}}=\pm \sqrt{\frac{\frac{1}{3}}{2}}=\pm \sqrt{\frac{1}{6}}$ since $\cos x$ is negative in II quadrant, hence $\cos \frac{x}{2}=-\frac{1}{\sqrt{6}}$ iii) $\tan \frac{x}{2}$ Formula used: $\tan x=\frac{\sin x}{\cos x}$ hence, $\tan \frac{x}{2}=\frac{\sin \frac{x}{2}}{\cos \frac{2}{2}}=\frac{\sqrt{\frac{5}{6}}}{-\frac{1}{\sqrt{6}}}=\frac{\sqrt{5}}{\sqrt{6}} \times \frac{\sqrt{6}}{-1}=-\sqrt{5}$ Here, tan x is negative in II quadrant.