$3 x-y+2 z=6$
$2 x-y+z=2$
$3 x+6 y+5 z=20$
Given: $3 x-y+2 z=6$
$D=\left|\begin{array}{ccc}3 & -1 & 2 \\ 2 & -1 & 1 \\ 3 & 6 & 5\end{array}\right|$
$3(-5-6)+1(10-3)+2(12+3)=4$
Since $D$ is non-zero, the system of linear equations is consistent and has a unique solution.
$D_{1}=\left|\begin{array}{ccc}6 & -1 & 2 \\ 2 & -1 & 1 \\ 20 & 6 & 5\end{array}\right|$
$=6(-5-6)+1(10-20)+2(12+20)$
$=-66-10+64$
$=-12$
$D_{2}=\left|\begin{array}{ccc}3 & 6 & 2 \\ 2 & 2 & 1 \\ 3 & 20 & 5\end{array}\right|$
$=3(10-20)-6(10-3)+2(40-6)$
$=-30-42+68$
$=-4$
$D_{3}=\left|\begin{array}{ccc}3 & -1 & 6 \\ 2 & -1 & 2 \\ 3 & 6 & 20\end{array}\right|$
$=3(-20-12)+1(40-6)+6(12+3)$
$=-96+34+90$
$=28$
Now,
$x=\frac{D_{1}}{D}=\frac{-12}{4}=-3$
$y=\frac{D_{2}}{D}=\frac{-4}{4}=-1$
$z=\frac{D_{3}}{D}=\frac{28}{4}=7$
$\therefore x=-3, y=-1$ and $\mathrm{z}=7$