Solve this

Question:

The value of $\int_{-\frac{\pi}{2}}^{\frac{\pi}{2}}\left(\frac{1+\sin ^{2} x}{1+\pi^{\sin x}}\right) d x$ is

  1. $\frac{\pi}{2}$

  2. $\frac{5 \pi}{4}$

  3. $\frac{3 \pi}{4}$

  4. $\frac{3 \pi}{2}$


Correct Option: , 3

Solution:

$I=\int_{0}^{\pi / 2} \frac{\left(1+\sin ^{2} x\right)}{\left(1+\pi^{\sin x}\right)}+\frac{\pi^{\sin x}\left(1+\sin ^{2} x\right)}{\left(1+\pi^{\sin x}\right)} d x$

$I=\int_{0}^{\pi / 2}\left(1+\sin ^{2} x\right) d x$

$I=\frac{\pi}{2}+\frac{\pi}{2} \cdot \frac{1}{2}=\frac{3 \pi}{4}$

Leave a comment