Question:
If $A=\operatorname{diag}(1,2,3)$, then $|\operatorname{adj}(\operatorname{adj} A)|=$
Solution:
Given:
$A=\operatorname{diag}(1,2,3)$
$\Rightarrow|A|=1 \times 2 \times 3=6$
As we know,
$|\operatorname{adj}(\operatorname{adj} A)|=|A|^{(n-1)^{2}}$, where $n$ is the order of $A$
$\Rightarrow|\operatorname{adj}(\operatorname{adj} A)|=|A|^{(3-1)^{2}} \quad(\because$ Order of $A$ is 3$)$
$\Rightarrow|\operatorname{adj}(\operatorname{adj} A)|=|A|^{(2)^{2}}$
$\Rightarrow|\operatorname{adj}(\operatorname{adj} A)|=|A|^{4}$
$\Rightarrow|\operatorname{adj}(\operatorname{adj} A)|=6^{4} \quad(\because|A|=6)$
$\Rightarrow|\operatorname{adj}(\operatorname{adj} A)|=1296$
Hence, $|\operatorname{adj}(\operatorname{adj} A)|=\underline{1296}$.