Question:
$x-y+3 z=6$
$x+3 y-3 z=-4$
$5 x+3 y+3 z=10$
Solution:
Using the equations, we get
$D=\left|\begin{array}{ccc}1 & -1 & 3 \\ 1 & 3 & -3 \\ 5 & 3 & 3\end{array}\right|=1(9+9)+1(3+15)+3(3-15)$
$=18+18-36=0$
$D_{1}=\left|\begin{array}{ccc}6 & -1 & 3 \\ -4 & 3 & -3 \\ 10 & 3 & 3\end{array}\right|=6(9+9)+1(-12+30)+3(-12-30)$
$=108+18-126=0$
$D_{2}=\left|\begin{array}{ccc}1 & 6 & 3 \\ 1 & -4 & -3 \\ 5 & 10 & 3\end{array}\right|=1(-12+30)-6(3+15)+3(10+20)$
$=18-108+90=0$
$D_{3}=\left|\begin{array}{ccc}1 & -1 & 6 \\ 1 & 3 & -4 \\ 5 & 3 & 10\end{array}\right|=1(30+12)+1(10+20)+6(3-15)$
$=42+30-72=0$
$\therefore D=D_{1}=D_{2}=D_{3}=0$
Hence, the system of equations has infinitely many solutions.