Solve this

Question:

If $\Delta A B C \sim \Delta Q R P, \frac{\operatorname{ar}(\Delta A B C)}{\operatorname{ar}(\Delta P Q R)}=\frac{9}{4}, A B=18 \mathrm{~cm}$ and $B C=15 \mathrm{~cm}$, then $P \mathrm{R}=?$

(a) 8 cm
(b) 10 cm
(c) 12 cm

(d) $\frac{20}{3} \mathrm{~cm}$

 

Solution:

(b) 10 cm

$\because \triangle A B C \sim \triangle Q R P$

$\therefore \frac{A B}{Q R}=\frac{B C}{P R}$

Now,

$\frac{\operatorname{ar}(\triangle A B C)}{\operatorname{ar}(\triangle Q R P)}=\frac{9}{4}$

$\Rightarrow\left(\frac{A B}{Q R}\right)^{2}=\frac{9}{4}$

$\Rightarrow \frac{A B}{Q R}=\frac{3}{2}$

Therefore,

$\frac{A B}{Q R}=\frac{B C}{P R}=\frac{3}{2}$

Hence, $3 P R=2 B C=2 \times 15=30$

$P R=10 \mathrm{~cm}$

 

Leave a comment