If $f(x)=\left|\log _{e}\right| x||$, then
(a) f (x) is continuous and differentiable for all x in its domain
(b) f (x) is continuous for all for all × in its domain but not differentiable at x = ± 1
(c) f (x) is neither continuous nor differentiable at x = ± 1
(d) none of these
(b) f (x) is continuous for all x in its domain but not differentiable at x = ± 1
We have, $f(x)=\left|\log _{e}\right| x||$
We know that $\log$ function is defined for positive value.
Here, $|x|$ is positive for all non zero $x$.
Therefore, domain of function is $R-\{0\}$
And we know that logarithmic function is continuous in its domain.
Therefore, $\left|\log _{\mathrm{e}}\right| x||$ is continuous in its domain.
We will check the differentiability at its critical points.
$\left|\log _{\mathrm{e}}\right| x||=\left\{\begin{array}{lc}\log _{e}(-x) & -\infty
$(\mathrm{LHD}$ at $x=-1)=\lim _{x \rightarrow-1^{-}} \frac{f(x)-f(-1)}{x-(-1)}$
$=\lim _{x \rightarrow-1^{-}} \frac{\log _{\mathrm{e}}(-x)-0}{x+1}$
$=\lim _{h \rightarrow 0} \frac{\log _{\mathrm{e}}[-(-1-h)]}{-1-h+1}$
$=\lim _{h \rightarrow 0} \frac{\log _{\mathrm{e}}(1+h)}{-h}$
$=-1$
$(\mathrm{RHD}$ at $x=-1)=\lim _{x \rightarrow-1^{+}} \frac{f(x)-f(-1)}{x-(-1)}$
$=\lim _{x \rightarrow-1^{+}} \frac{-\log _{e}(-x)-0}{x+1}$
$=\lim _{h \rightarrow 0} \frac{-\log _{e}[-(-1+h)]}{-1+h+1}$
$=\lim _{h \rightarrow 0} \frac{-\log _{e}(1-h)}{h}$
$=-\lim _{h \rightarrow 0} \frac{\log _{e}(1-h)}{h}$
$=-1 \times-1=1$
Here, $\mathrm{LHD} \neq \mathrm{RHD}$
Therefore, the given function is not differentiable at $x=-1$.
$(\mathrm{LHD}$ at $x=1)=\lim _{\mathrm{x} \rightarrow 1^{-}} \frac{f(x)-f(1)}{x-1}$
$=\lim _{x \rightarrow 1^{-}} \frac{-\log _{\mathrm{e}}(x)-0}{x-1}$
$=\lim _{h \rightarrow 0} \frac{-\log _{\mathrm{e}}[(1-h)]}{1-h-1}$
$=\lim _{h \rightarrow 0} \frac{\log _{\mathrm{e}}(1-h)}{h}$
$=-1$
$(\mathrm{RHD}$ at $x=1)=\lim _{x \rightarrow 1^{+}} \frac{f(x)-f(1)}{x-(1)}$
$=\lim _{x \rightarrow 1^{+}} \frac{\log _{e}(x)-0}{x-1}$
$=\lim _{h \rightarrow 0} \frac{\log _{e}[(1+h)]}{1+h-1}$
$=\lim _{h \rightarrow 0} \frac{\log _{e}(1+h)}{h}$
$=1$
Here, LHD $\neq$ RHD
Therefore, the given function is not differentiable at $x=1$.
Therefore, given function is continuous for all $x$ in its domain but not differentiable at $x=\pm 1$