Let $f: R \rightarrow R: f(x)=x^{2}+1 .$ Find
(i) $f^{-1}\{10\}$
(ii) $f^{-1}\{-3\}$.
Given: $f(x)=x^{2}+1$
To find: (i) $f^{-1}\{10\}$
We know that, if $f: X \rightarrow Y$ such that $y \in Y$. Then $f^{-1}(y)=\{x \in X: f(x)=y\}$.
In other words, $\mathrm{f}^{-1}(\mathrm{y})$ is the set of pre - images of $\mathrm{y}$
Let $f^{-1}\{10\}=x$. Then, $f(x)=10$...(i)
and it is given that $f(x)=x^{2}+1 \ldots$ (ii)
So, from (i) and (ii), we get
$x^{2}+1=10$
$\Rightarrow x^{2}=10-1$
$\Rightarrow x^{2}=9$
$\Rightarrow x=\sqrt{9}$
$\Rightarrow x=\pm 3$
$\therefore f^{-1}\{10\}=\{-3,3\}$
To find: (ii) $f^{-1}\{-3\}$
Let $f^{-1}\{-3\}=x$. Then, $f(x)=-3 \ldots$ (iii)
and it is given that $f(x)=x^{2}+1 \ldots$ (iv)
So, from (iii) and (iv), we get
$x^{2}+1=-3$
$\Rightarrow x^{2}=-3-1$
$\Rightarrow x^{2}=-4$
Clearly, this equation is not solvable in R
$\therefore f^{-1}\{-3\}=\phi$