If $y=(\sin x)^{(\sin x)^{(\sin x)^{-\infty}}}$, prove that $\frac{d y}{d x}=\frac{y^{2} \cot x}{(1-y \log \sin x)}$
Here,
$y=(\sin x)^{(\sin x)^{(\sin x)^{-\infty}}}$
$y=(\sin x)^{y}$
By taking log on both sides,
$\log y=\log (\sin x)^{y}$
$\log y=y(\log \sin x)$
Differentiating both sides with respect to $x$ by using product rule,
$\frac{1}{y} \frac{d y}{d x}=y \frac{d(\log \sin x)}{d x}+\log \sin x \frac{d y}{d x}$
$\frac{1}{y} \frac{d y}{d x}=\frac{y}{\sin x} \frac{d(\sin x)}{d x}+\log \sin x \frac{d y}{d x}$
$\left(\frac{1}{y}-\log \sin x\right) \frac{d y}{d x}=\frac{y}{\sin x}(\cos x)$
$\left(\frac{1-y \log \sin x}{y}\right) \frac{d y}{d x}=y \cot x$
$\frac{\mathrm{dy}}{\mathrm{dx}}=\frac{\mathrm{y}^{2} \cot \mathrm{x}}{1-\mathrm{y} \log \sin \mathrm{x}}$
Hence proved.