Solve this

Question:

For the matrix $A=\left[\begin{array}{ll}2 & 3 \\ 5 & 7\end{array}\right]$, find $A+A^{T}$ and verify that it is a symmetric matrix.

Solution:

The given matrix is

$A=\left[\begin{array}{ll}2 & 3 \\ 5 & 7\end{array}\right]$                                     ...(1)

$\therefore A^{T}=\left[\begin{array}{ll}2 & 5 \\ 3 & 7\end{array}\right]$             ....(2)

Adding $(1)$ and $(2)$, we get

$A+A^{T}=\left[\begin{array}{ll}2 & 3 \\ 5 & 7\end{array}\right]+\left[\begin{array}{ll}2 & 5 \\ 3 & 7\end{array}\right]$

$\Rightarrow A+A^{T}=\left[\begin{array}{ll}2+2 & 3+5 \\ 5+3 & 7+7\end{array}\right]=\left[\begin{array}{cc}4 & 8 \\ 8 & 14\end{array}\right]$

A matrix $X$ is said to be symmetric matrix if $X^{T}=X$.

Now,

$\left(A+A^{T}\right)^{T}=\left[\begin{array}{cc}4 & 8 \\ 8 & 14\end{array}\right]^{T}=\left[\begin{array}{cc}4 & 8 \\ 8 & 14\end{array}\right]$

$\therefore\left(A+A^{T}\right)^{T}=A+A^{T}$

Thus, the matrix $A+A^{T}$ is symmetric matrix.

Leave a comment