Solve this

Question:

$x^{2}+3 i x+10=0$

 

Solution:

Given:

$x^{2}+3 i x+10=0$

$\Rightarrow \mathrm{x}^{2}+5 \mathrm{ix}-2 \mathrm{i} \mathrm{x}+10=0$

$\Rightarrow x(x+5 i)-2 i\left(x-\frac{10}{2 i}\right)=0$

$\Rightarrow x(x+5 i)-2 i\left(x-\frac{5 \times i}{i \times i}\right)=0$

$\Rightarrow^{x(x+5 i)-2 i\left(x-\frac{5 \times i}{-1}\right)}=0$

$\Rightarrow x(x+5 i)-2 i(x+5 i)=0$

$\Rightarrow(x+5 i)(x-2 i)=0$

$\Rightarrow \mathrm{x}+5 \mathrm{i}=0 \& \mathrm{x}-2 \mathrm{i}=0$

$\Rightarrow \mathrm{x}=-5 \mathrm{i} \& \mathrm{x}=2 \mathrm{i}$

Ans: $x=-5 i \& x=2 i$

 

Leave a comment