Solve this

Question:

If $\mathrm{y}=\sin ^{-1}\left(\frac{2 \mathrm{x}}{1+\mathrm{x}^{2}}\right)$, write the value of $\frac{\mathrm{dy}}{\mathrm{dx}}$ for $\mathrm{x}>1$

Solution:

$y=\sin ^{-1}\left(\frac{2 x}{1+x^{2}}\right)=2 \tan ^{-1} x$

So,

$\frac{\mathrm{dy}}{\mathrm{dx}}=2 \cdot \frac{1}{1+\mathrm{x}^{2}}$

$=\frac{2}{1+x^{2}}$

So, answer is $\frac{d y}{d x}=\frac{2}{1+x^{2}}$ (Ans)

Leave a comment