$y=\sqrt{\frac{1-x}{1+x}}$, prove that $\left(1-x^{2}\right) \frac{d y}{d x}+y=0$
Let $y=\sqrt{\frac{1-x^{1}}{1+x^{1}}}, u=1-x^{1}, v=1+x^{1}, z=\frac{1-x^{1}}{1+x^{1}}$
According to quotient rule of differentiation
If $\mathrm{z}=\frac{\mathrm{u}}{\mathrm{V}}$
$\mathrm{dz} / \mathrm{dx}=\frac{\mathrm{v} \times \frac{\mathrm{du}}{\mathrm{dx}}-\mathrm{u} \times \frac{\mathrm{dv}}{\mathrm{dx}}}{\mathrm{v}^{2}}$
$=\frac{\left(1+x^{1}\right) \times(-1)-\left(1-x^{1}\right) \times(1)}{\left(1+x^{1}\right)^{2}}$
$=\frac{-1-x^{1}-1+x}{\left(1+x^{1}\right)^{2}}$
$=\frac{-2}{(1+x)^{2}}$
According to the chain rule of differentiation
$\mathrm{dy} / \mathrm{dx}=\frac{\mathrm{dy}}{\mathrm{dz}} \times \frac{\mathrm{dz}}{\mathrm{dx}}$
$=\left[\frac{1}{2} \times\left(\frac{1-x^{1}}{1+x^{1}}\right)^{\frac{1}{2}-1}\right] \times\left[\frac{-2}{\left(1+x^{1}\right)^{2}}\right]$
$=\left[\frac{-1}{1} \times\left(\frac{1-x^{1}}{1+x}\right)^{-\frac{1}{2}}\right] \times\left[\frac{1}{\left(1+x^{1}\right)^{2}}\right]$
$=\left[-1 \times \frac{\left(1-x^{1}\right)^{-\frac{1}{2}}}{\left(1+x^{1}\right)^{1-\frac{1}{2}}}\right] \times\left[\frac{1}{\left(1+x^{1}\right)^{1}}\right] \times \frac{1-x}{1-x}$
(Muliplying and dividing by 1-x )
$=\left[-1 \times \frac{\left(1-x^{1}\right)^{1-\frac{1}{2}}}{\left(1+x^{1}\right)^{\frac{1}{2}}}\right] \times \frac{1}{(1-x)(1+x)}$
$=\left[-1 \times \frac{\left(1-x^{1}\right)^{\frac{1}{2}}}{\left(1+x^{1}\right)^{\frac{1}{2}}}\right] \times \frac{1}{(1-x)(1+x)}=-\frac{y}{1-x^{2}}$
Therefore
$\left(1-x^{2}\right) \frac{d y}{d x}=-y$
$\left(1-x^{2}\right) \frac{d y}{d x}+y=0$
HENCE PROVED
Click here to get exam-ready with eSaral
For making your preparation journey smoother of JEE, NEET and Class 8 to 10, grab our app now.