Solve this

Question:

If $A=\left[\begin{array}{rrr}-1 & 0 & 0 \\ 0 & -1 & 0 \\ 0 & 0 & -1\end{array}\right]$, find $A^{3}$

Solution:

Here,

$A^{2}=A A$

$\Rightarrow A^{2}=\left[\begin{array}{ccc}-1 & 0 & 0 \\ 0 & -1 & 0 \\ 0 & 0 & -1\end{array}\right]\left[\begin{array}{ccc}-1 & 0 & 0 \\ 0 & -1 & 0 \\ 0 & 0 & -1\end{array}\right]$

$\Rightarrow A^{2}=\left[\begin{array}{cc}1+0+0 & 0+0+0 & 0+0+0 \\ 0+0+0 & 0+1+0 & 0+0+0 \\ 0+0+0 & 0+0+0 & 0+0+1\end{array}\right]$

$\Rightarrow A^{2}=\left[\begin{array}{lll}1 & 0 & 0 \\ 0 & 1 & 0 \\ 0 & 0 & 1\end{array}\right]$

Now,

$A^{3}=A^{2} A$

$\Rightarrow A^{3}=\left[\begin{array}{ccc}1 & 0 & 0 \\ 0 & 1 & 0 \\ 0 & 0 & 1\end{array}\right]\left[\begin{array}{ccc}-1 & 0 & 0 \\ 0 & -1 & 0 \\ 0 & 0 & -1\end{array}\right]$

$\Rightarrow A^{3}=\left[\begin{array}{ccc}-1+0+0 & 0+0+0 & 0+0+0 \\ 0+0+0 & 0-1+0 & 0+0+0 \\ 0+0+0 & 0+0+0 & 0+0-1\end{array}\right]$

$\Rightarrow A^{3}=\left[\begin{array}{ccc}-1 & 0 & 0 \\ 0 & -1 & 0 \\ 0 & 0 & -1\end{array}\right]=A$

Leave a comment