Solve this

Question:

$\sqrt{\frac{1+\cos A}{1-\cos A}}=?$

(a) cosec A – cot A
(b) cosec A + cot A
(c) cosec cot A
(d) none of these

 

Solution:

$\sqrt{\frac{1+\cos (A)}{1-\cos (A)}}=\sqrt{\frac{1+\cos (A)}{1-\cos (A)} \times \frac{1+\cos (A)}{1+\cos (A)}}=\frac{1+\cos (A)}{\sqrt{1-\cos ^{2}(A)}}$

$=\frac{1+\cos (A)}{\sqrt{\sin ^{2}(A)}}=\frac{1+\cos (A)}{\sin (A)}=\frac{1}{\sin (A)}+\frac{\cos (A)}{\sin (A)}$

$=\operatorname{cosec}(A)+\cot (A)$

Hence, the correct answer is option B.

 

Leave a comment