Solve this

Question:

If $A=\left[\begin{array}{lll}a & 0 & 0 \\ 0 & a & 0 \\ 0 & 0 & a\end{array}\right]$, then the value of $|\operatorname{adj} A|$ is

(a) $a^{27}$

(b) $a^{9}$

(c) $a^{6}$

(d) $a^{2}$

Solution:

(c) $a^{6}$

$A=\left[\begin{array}{lll}a & 0 & 0\end{array}\right.$

$\therefore|A|=\mid a \quad 0 \quad 0$

and

$n=3$

Thus, we have

$|\operatorname{adj} A|=|A|^{n-1}=\left(a^{3}\right)^{2}=a^{6}$

Leave a comment