Solve this

Question:

If $(x+a)$ is a factor of the polynomial $2 x^{2}+2 a x+5 x+10$, find the value of $a .$

 

Solution:

Given: $(x+a)$ is a factor of $2 x^{2}+2 a x+5 x+10$

So, we have

$x+a=0$

$\Rightarrow x=-a$

Now, It will satisfy  the above polynomial.
Therefore, we will get

$2(-a)^{2}+2 a(-a)+5(-a)+10=0$

$\Rightarrow 2 a^{2}-2 a^{2}-5 a+10=0$

$\Rightarrow-5 a=-10$

$\Rightarrow a=2$

 

Leave a comment