Solve this

Question:

If $A=\left[\begin{array}{rrr}1 & 0 & 0 \\ 0 & 1 & 0 \\ a & b & -1\end{array}\right]$, then $A^{2}$ is equal to

(a) a : matrix

(b) a unit matrix

(c) $-A$

(d) $A$

Solution:

(b) a unit matrix

$A^{2}=A A$

$\Rightarrow A^{2}=\left[\begin{array}{ccc}1 & 0 & 0 \\ 0 & 1 & 0 \\ a & b & -1\end{array}\right]\left[\begin{array}{ccc}1 & 0 & 0 \\ 0 & 1 & 0 \\ a & b & -1\end{array}\right]$

$\Rightarrow A^{2}=\left[\begin{array}{lll}1+0+0 & 0+0+0 & 0+0-0 \\ 0+0+0 & 0+1+0 & 0+0-0 \\ a+0-a & 0+b-b & 0+0+1\end{array}\right]$

$\Rightarrow A^{2}=\left[\begin{array}{lll}1 & 0 & 0 \\ 0 & 1 & 0 \\ 0 & 0 & 1\end{array}\right]$

Leave a comment