Solve this

Question:

If $\sin \theta=\frac{c}{\sqrt{c^{2}+d^{2}}}$, where $d>0$ then find the values of $\cos \theta$ and $\tan \theta$.

 

Solution:

Given : $\sin \theta=\frac{c}{\sqrt{c^{2}+d^{2}}}$

Since, $\sin \theta=\frac{P}{H}$

$\Rightarrow P=c$ and $H=\sqrt{c^{2}+d^{2}}$

Using Pythagoras theorem,

$P^{2}+B^{2}=H^{2}$

$\Rightarrow c^{2}+B^{2}=c^{2}+d^{2}$

$\Rightarrow B^{2}=d^{2}$

$\Rightarrow B=d$

Therefore,

$\cos \theta=\frac{B}{H}=\frac{d}{\sqrt{c^{2}+d^{2}}}$

$\tan \theta=\frac{P}{B}=\frac{c}{d}$

Hence, $\cos \theta=\frac{d}{\sqrt{c^{2}+d^{2}}}$ and $\tan \theta=\frac{c}{d}$.

 

Leave a comment