Solve this

Question:

If $f(1)=4, f^{\prime}(1)=2$, find the value of the derivative of $\log \left(f\left(e^{x}\right)\right)$ with respect to $x$ at the point $x=0$.

Solution:

Using the Chain Rule of Differentiation, derivative of $\log \left(f\left(e^{x}\right)\right)$ w.r.t. $x$ is $\frac{1}{f\left(e^{x}\right)} \cdot f^{\prime}\left(e^{x}\right)$

So, the value of the derivative at $x=0$ is

$\frac{1}{f\left(e^{0}\right)} \cdot f^{\prime}\left(e^{0}\right)=\frac{1}{f(1)} \cdot f^{\prime}(1)$

$=\frac{1}{4} \cdot 2$

$=\frac{1}{2}$

So, the value of the derivative at $x=0$ is $0.5$ (Ans)

Leave a comment