If $\sin \theta+\cos \theta=\frac{1}{2}$, then
$16(\sin (2 \theta)+\cos (4 \theta)+\sin (6 \theta))$ is equal to:
Correct Option: , 3
$\sin \theta+\cos \theta=\frac{1}{2}$
$\sin ^{2} \theta+\cos ^{2} \theta+2 \sin \theta \cos \theta=\frac{1}{4}$
$\sin 2 \theta=-\frac{3}{4}$
Now :
$\cos 4 \theta=1-2 \sin ^{2} 2 \theta$
$=1-2\left(-\frac{3}{4}\right)^{2}$
$=1-2 \times \frac{9}{16}=-\frac{1}{8}$
$\sin 6 \theta=3 \sin 2 \theta-4 \sin ^{3} 2 \theta$
$=\left(3-4 \sin ^{2} 2 \theta\right) \cdot \sin 2 \theta$
$=\left[3-4\left(\frac{9}{16}\right)\right] \cdot\left(-\frac{3}{4}\right)$
$\Rightarrow\left[\frac{3}{4}\right] \times\left(-\frac{3}{4}\right)=-\frac{9}{16}$
$16[\sin 2 \theta+\cos 4 \theta+\sin 6 \theta]$
$16\left(-\frac{3}{4}-\frac{1}{8}-\frac{9}{16}\right)=-23$