Solve this

Question:

Let $a_{1}, a_{2} \ldots, a_{n}$ be a given A.P. whose common difference is an integer and $S_{n}=a_{1}+a_{2}+\ldots+a_{n}$. If $a_{1}=1, a_{n}=300$ and $15 \leq n \leq 50$, then the ordered pair $\left(S_{n-4}, a_{n-4}\right)$ is equal to :

 

  1. $(2480,249)$

  2. $(2490,249)$

  3. $(2490,248)$

  4. $(2480,248)$


Correct Option: , 3

Solution:

$a_{n}=a_{1}+(n-1) d$

$\Rightarrow 300=1+(\mathrm{n}-1) \mathrm{d}$

$\Rightarrow(\mathrm{n}-1) \mathrm{d}=299=13 \times 23$

since, $\mathrm{n} \in[15,50]$

$\therefore \mathrm{n}=24$ and $\mathrm{d}=13$

$a_{n-4}=a_{20}=1+19 \times 13=248$

$\Rightarrow a_{n-4}=248$

$S_{n-4}=\frac{20}{2}\{1+248\}=2490$

 

Leave a comment