Differentiate $\sin ^{-1} \sqrt{1-x^{2}}$ with respect to $\cot ^{-1}\left(\frac{x}{\sqrt{1-x^{2}}}\right)$, if $0
Let $u=\sin ^{-1} \sqrt{1-x^{2}}$ and $v=\cot ^{-1}\left(\frac{x}{\sqrt{1-x^{2}}}\right)$
We need to differentiate $u$ with respect to $v$ that is find $\frac{d u}{d v}$.
We have $u=\sin ^{-1} \sqrt{1-x^{2}}$
By substituting $x=\cos \theta$, we have
$\mathrm{u}=\sin ^{-1} \sqrt{1-(\cos \theta)^{2}}$
$\Rightarrow u=\sin ^{-1} \sqrt{1-\cos ^{2} \theta}$
$\Rightarrow u=\sin ^{-1} \sqrt{\sin ^{2} \theta}\left[\because \sin ^{2} \theta+\cos ^{2} \theta=1\right]$
$\Rightarrow u=\sin ^{-1}(\sin \theta)$
Given, $0 However, $x=\cos \theta$ $\Rightarrow \cos \theta \in(0,1)$ $\Rightarrow \theta \in\left(0, \frac{\pi}{2}\right)$ Hence, $u=\sin ^{-1}(\sin \theta)=\theta$ $\Rightarrow u=\cos ^{-1} x$ On differentiating $u$ with respect to $x$, we get $\frac{\mathrm{du}}{\mathrm{dx}}=\frac{\mathrm{d}}{\mathrm{dx}}\left(\cos ^{-1} \mathrm{x}\right)$ We know $\frac{\mathrm{d}}{\mathrm{dx}}\left(\cos ^{-1} \mathrm{x}\right)=-\frac{1}{\sqrt{1-\mathrm{x}^{2}}}$ $\therefore \frac{\mathrm{du}}{\mathrm{dx}}=-\frac{1}{\sqrt{1-\mathrm{x}^{2}}}$ Now, we have $v=\cot ^{-1}\left(\frac{x}{\sqrt{1-x^{2}}}\right)$ By substituting $x=\cos \theta$, we have $v=\cot ^{-1}\left(\frac{\cos \theta}{\sqrt{1-(\cos \theta)^{2}}}\right)$ $\Rightarrow \mathrm{v}=\cot ^{-1}\left(\frac{\cos \theta}{\sqrt{1-\cos ^{2} \theta}}\right)$ $\Rightarrow \mathrm{v}=\cot ^{-1}\left(\frac{\cos \theta}{\sqrt{\sin ^{2} \theta}}\right)\left[\because \sin ^{2} \theta+\cos ^{2} \theta=1\right]$ $\Rightarrow \mathrm{v}=\cot ^{-1}\left(\frac{\cos \theta}{\sin \theta}\right)$ $\Rightarrow \mathrm{v}=\cot ^{-1}(\cot \theta)$ However, $\theta \in\left(0, \frac{\pi}{2}\right)$ Hence, $v=\cot ^{-1}(\cot \theta)=\theta$ $\Rightarrow v=\cos ^{-1} x$ On differentiating $v$ with respect to $x$, we get $\frac{d v}{d x}=\frac{d}{d x}\left(\cos ^{-1} x\right)$ We know $\frac{\mathrm{d}}{\mathrm{dx}}\left(\cos ^{-1} \mathrm{x}\right)=-\frac{1}{\sqrt{1-\mathrm{x}^{2}}}$ $\therefore \frac{\mathrm{dv}}{\mathrm{dx}}=-\frac{1}{\sqrt{1-\mathrm{x}^{2}}}$ We have $\frac{d u}{d v}=\frac{\frac{d u}{d v}}{\frac{d v}{d x}}$ $\Rightarrow \frac{\mathrm{du}}{\mathrm{dv}}=\frac{-\frac{1}{\sqrt{1-\mathrm{x}^{2}}}}{-\frac{1}{\sqrt{1-\mathrm{x}^{2}}}}$ $\Rightarrow \frac{\mathrm{du}}{\mathrm{dv}}=-\frac{1}{\sqrt{1-\mathrm{x}^{2}}} \times \frac{\sqrt{1-\mathrm{x}^{2}}}{-1}$ $\therefore \frac{\mathrm{du}}{\mathrm{dv}}=1$ Thus, $\frac{\mathrm{du}}{\mathrm{dv}}=1$