$x+y-6 z=0$
$x-y+2 z=0$
$-3 x+y+2 z=0$
Here,
$x+y-6 z=0$ ....(1)
$x-y+2 z=0$ .....(2)
$-3 x+y+2 z=0$ ...(3)
The given system of homogeneous equations can be written in matrix form as follows:
$\left[\begin{array}{ccc}1 & 1 & -6 \\ 1 & -1 & 2 \\ -3 & 1 & 2\end{array}\right]\left[\begin{array}{l}x \\ y \\ z\end{array}\right]=\left[\begin{array}{l}0 \\ 0 \\ 0\end{array}\right]$
$A X=O$
Here,
$A=\left[\begin{array}{ccc}1 & 1 & -6 \\ 1 & -1 & 2 \\ -3 & 1 & 2\end{array}\right], X=\left[\begin{array}{l}x \\ y \\ z\end{array}\right]$ and $O=\left[\begin{array}{l}0 \\ 0 \\ 0\end{array}\right]$
Now,
$|A|=\left|\begin{array}{ccc}1 & 1 & -6 \\ 1 & -1 & 2 \\ -3 & 1 & 2\end{array}\right|$
$=1(-2-2)-1(2+6)-6(1-3)$
$=-4-8+12$
$=0$
$\therefore|A|=0$
So, the given system of homogeneous equations has non-trivial solution.
Substituting $z=k$ in eq. (1) and eq. (2), we get
$x+y=6 k$ and $x-y=-2 k$
$A X=B$
Here,
$A=\left[\begin{array}{cc}1 & 1 \\ 1 & -1\end{array}\right], X=\left[\begin{array}{c}x \\ y\end{array}\right]$ and $B=\left[\begin{array}{c}6 k \\ -2 k\end{array}\right]$
$\Rightarrow\left[\begin{array}{cc}1 & 1 \\ 1 & -1\end{array}\right]\left[\begin{array}{l}x \\ y\end{array}\right]=\left[\begin{array}{c}6 k \\ -2 k\end{array}\right]$
Now,
$|A|=\left|\begin{array}{cc}1 & 1 \\ 1 & -1\end{array}\right|$
$=(1 \times-1-1 \times 1)$
$=-2$
So, A $^{-1}$ exists.
We have
$\operatorname{adj} A=\left[\begin{array}{cc}-1 & -1 \\ -1 & 1\end{array}\right]$
$\mathrm{A}^{-1}=\frac{1}{|A|} \operatorname{adj} A$
$\Rightarrow A^{-1}=\frac{1}{-2}\left[\begin{array}{cc}-1 & -1 \\ -1 & 1\end{array}\right]$
$X=A^{-1} B$
$\Rightarrow\left[\begin{array}{l}x \\ y\end{array}\right]=\frac{1}{-2}\left[\begin{array}{cc}-1 & -1 \\ -1 & 1\end{array}\right]\left[\begin{array}{c}6 k \\ -2 k\end{array}\right]$
$X=A^{-1} B$
$\Rightarrow\left[\begin{array}{l}x \\ y\end{array}\right]=\frac{1}{-2}\left[\begin{array}{cc}-1 & -1 \\ -1 & 1\end{array}\right]\left[\begin{array}{c}6 k \\ -2 k\end{array}\right]$
$=\frac{1}{-2}\left[\begin{array}{l}-6 k+2 k \\ -6 k-2 k\end{array}\right]$
Thus, $x=2 k, y=4 k$ and $z=k$ (where $k$ is any real number) satisfy the given system of equations.