Question:
Solve for $x: x^{2}-5 i x-6=0$
Solution:
We have, $x^{2}-5 i x-6=0$
Here, $b^{2}-4 a c=(-5 i)^{2}-4 \times 1 \times-6$
$=25 i^{2}+24=-25+24=-1$
Therefore, the solutions are given by $\mathrm{x}=\frac{-(-5 \mathrm{i}) \pm \sqrt{-1}}{2 \times 1}$
$x=\frac{5 i \pm i}{2 \times 1}$
$x=\frac{5 i \pm i}{2}$
Hence, x= 3i and x = 2i