Solve the system of equations, $\operatorname{Re}\left(z^{2}\right)=0,|z|=2$
Given: $\operatorname{Re}\left(z^{2}\right)=0$ and $|z|=2$
Let $z=x+i y$
$\therefore|z|=\sqrt{x^{2}+y^{2}}$
$\Rightarrow 2=\sqrt{x^{2}+y^{2}}$ [Given]
Squaring both the sides, we get
$x^{2}+y^{2}=4 \ldots$ (i)
Since, $z=x+i y$
$\Rightarrow z^{2}=(x+i y)^{2}$
$\Rightarrow z^{2}=x^{2}+i^{2} y^{2}+2 i x y$
$\Rightarrow z^{2}=x^{2}+(-1) y^{2}+2 i x y$
$\Rightarrow z^{2}=x^{2}-y^{2}+2 i x y$
It is given that $\operatorname{Re}\left(z^{2}\right)=0$
$\Rightarrow \mathrm{x}^{2}-\mathrm{y}^{2}=0 \ldots$ (ii)
Adding eq. (i) and (ii), we get
$x^{2}+y^{2}+x^{2}-y^{2}=4+0$
$\Rightarrow 2 x^{2}=4$
$\Rightarrow x^{2}=2$
$\Rightarrow x=\pm \sqrt{2}$
Putting the value of $x^{2}=2$ in eq. (i), we get
$2+y^{2}=4$
$\Rightarrow y^{2}=2$
$\Rightarrow y=\pm \sqrt{2}$
Hence, $z=\sqrt{2} \pm i \sqrt{2},-\sqrt{2} \pm i \sqrt{2}$