solve the matrix

Question:

The matrix $\left[\begin{array}{ccc}5 & 10 & 3 \\ -2 & -4 & 6 \\ -1 & -2 & b\end{array}\right]$ is a singular matrix, if the value of $b$ is

(a) $-3$

(b) 3

(c) 0

(d) non-existent

Solution:

(d) non-existent

For any singular matrix, the value of the determinant is 0 .

Here,

$A=\left[\begin{array}{ccc}5 & 10 & 3 \\ -2 & -4 & 6 \\ -1 & -2 & b\end{array}\right]$

$|A|=5(-4 b+12)-10(-2 b+6)+3(4-4)=0$

$\Rightarrow-20 b+60+20 b-12=0$

Hence, $b$ is non-existent.

Leave a comment