Question:
Solve the given inequality for real x: $\frac{x}{4}<\frac{(5 x-2)}{3}-\frac{(7 x-3)}{5}$
Solution:
$\frac{x}{4}<\frac{(5 x-2)}{3}-\frac{(7 x-3)}{5}$
$\Rightarrow \frac{x}{4}<\frac{5(5 x-2)-3(7 x-3)}{15}$
$\Rightarrow \frac{x}{4}<\frac{25 x-10-21 x+9}{15}$
$\Rightarrow \frac{x}{4}<\frac{4 x-1}{15}$
$\Rightarrow 15 x<4(4 x-1)$
$\Rightarrow 15 x<16 x-4$
$\Rightarrow 4<16 x-15 x$
$\Rightarrow 4 Thus, all real numbers $x$, which are greater than 4, are the solutions of the given inequality. Hence, the solution set of the given inequality is $(4, \infty)$.