Solve the following systems of linear in equations:
$-12<4-\frac{3 x}{-5} \leq 2$
$-12<4-\frac{3 x}{-5}$ and $4-\frac{3 x}{-5} \leq 2$
When,
$-12<4-\frac{3 x}{-5}$
$4-\frac{3 x}{-5}>-12$
Subtracting 4 from both the sides in above equation
$4-\frac{3 x}{-5}-4>12-4$
$-\frac{\frac{3 x}{-5}} >-16$
$\frac{3 x}{5}>-16$
Multiplying both the sides by 5 in the above equation
$\left(\frac{3 x}{5}\right)(5)>-16(5)$
$3 x>-80$
Dividing both the sides by 3 in above equation
$\left(\frac{3 x}{3}\right)>\frac{-80}{3}$
Therefore,
$x>\frac{-80}{3}$
Now when,
$4-\frac{3 x}{-5} \leq 2$
Subtracting both the sides by 4 in the above equation
$4-\frac{\frac{3 x}{-5}}{-4} \leq 2-4$
$-\frac{3 x}{-5} \leq-2$
$\frac{3 x}{5} \leq-2$
Multiplying both the sides by 5 in the above equation
$3 x \leq-10$
Dividing both the sides by 3 in the above equation
$\frac{3 x}{3} \leq \frac{-10}{3}$
Therefore,
$x \leq \frac{-10}{3}$
Therefore: $\mathrm{x} \in\left(\frac{-80}{3}, \frac{-10}{3}\right]$