Solve the following systems of equations graphically:
$2 x+y-3=0$
$2 x-3 y-7=0$
The given equations are
$\Rightarrow 2 x+y=3$ $\ldots . .(i)$
$\Rightarrow 2 x-3 y=7$ $\ldots . .(ii)$
Putting $x=0$ in equation $(i)$, we get:
$\Rightarrow 2 \times 0+y=3$
$\Rightarrow y=3$
$x=0, \quad y=3$
Putting $y=0$ in equation $(i,$, we get:
$\Rightarrow 2 x+0=3$
$\Rightarrow x=3 / 2$
$x=3 / 2, \quad y=0$
Use the following table to draw the graph.
Draw the graph by plotting the two points $A(0,3)$ and $B(3 / 2,0)$ from table.
Graph of the equation....(ii):
$2 x-3 y=7$
Putting $x=0$ in equation (ii) we get:
$\Rightarrow 2 \times 0-3 y=7$
$\Rightarrow y=-7 / 3$
$x=0, \quad y=-7 / 3$
Putting $y=0$ in equation $(i i)$, we get
Use the following table to draw the graph.
Draw the graph by plotting the two points $C(0,-7 / 2)$ and $D(7 / 2,0)$ from table.
The two lines intersect at points $\mathrm{P}(2,-1)$.
Hence $x=2, y=-1$ is the solution.