Solve the following systems of equations graphically:
$x-2 y=6$
$3 x-6 y=0$
The given equations are:
$x-2 y=6 \quad \ldots \ldots .(i)$
$3 x-6 y=0 \quad \ldots \ldots . .(i i)$
Putting $x=0$ in equation $(i)$, we get:
$\Rightarrow 0-2 y=6$
$\Rightarrow y=-3$
$x=0, \quad y=-3$
Putting $y=0$ in equation $(i)$ we get:
$\Rightarrow x-2 \times 0=6$
$\Rightarrow y=6$
$x=6, \quad y=0$
Use the following table to draw the graph.
Plotting the two points $A(0,-3)$ and $B(6,0)$ equation $(i)$ can be drawn.
Graph of the equation. (ii):
$3 x-6 y=0 \quad \ldots \ldots \ldots(i i)$
Putting $x=0$ in equation $(i i)$, we get:
$\Rightarrow 3 \times 0-6 y=0$
$\Rightarrow y=0$
$x=0, \quad y=0$
Putting $x=2$ in equation $(i i)$, we get:
$\Rightarrow 3 \times 2-6 y=0$
$\Rightarrow y=1$
$x=2, \quad y=1$
Use the following table to draw the graph.
Draw the graph by plotting the two points $O(0,0)$ and $D(2,1)$ from table.
We see that the two lines are parallel, so they won't intersect
Hence there is no solution