Solve the following systems of equations graphically:
$x+y=6$
$x-y=2$
The given equations are
$x+y=6 \quad \ldots \ldots .(i)$
$x-y=2 \quad \ldots \ldots \ldots(i i)$
Putting $x=0$ in equation $(i)$, we get:
$\Rightarrow x+0=6$
$\Rightarrow x=6$
$x=0, \quad y=6$
Putting $y=0$ in equation $(i,$, we get:
$\Rightarrow x+0=6$
$\Rightarrow x=6$
$x=6, \quad y=0$
Use the following table to draw the graph.
Draw the graph by plotting the two points $A(0,6)$ and $B(6,0)$ from table.
Graph of the equation. (ii):
$x-y=2$ ...(ii)
Putting $x=0$ in equation (ii) we get:
$\Rightarrow 0-y=2$
$\Rightarrow y=-2$
$x=0, \quad y=-2$
Putting $y=0$ in equation $($ ii $)$, we get:
$\Rightarrow x-0=2$
$\Rightarrow x=2$
$x=2, \quad y=0$
Use the following table to draw the graph.
Draw the graph by plotting the two points $C(0,-2)$ and $D(2,0)$ from table.
The two lines intersect at points $P(4,2)$.
Hence $x=4, \quad y=2$ is the solution.