Solve the following systems of equations graphically:
$x-2 y=5$
$2 x+3 y=10$
The given equations are
$x-2 y=5 \quad \ldots \ldots \ldots(i)$
$2 x+3 y=10 \quad \ldots \ldots \ldots($ ii $)$
Putting $x=0$ in equation $(i)$, we get:
$\Rightarrow 0-2 y=5$
$\Rightarrow y=-5 / 2$
$x=0, y=-5 / 2$
Putting $y=0$ in equation $(i)$, we get:
$\Rightarrow x+2 \times 0=5$
$\Rightarrow x=5$
$x=5, \quad y=0$
Use the following table to draw the graph.
Draw the graph by plotting the two points $A(0,-5 / 2)$ and $B(5,0)$ from table.
Graph the equation (ii):
$\Rightarrow 2 x+3 y=10 \ldots \ldots .(i i)$
Putting $x=0$ in equation (ii), we get:
$\Rightarrow 2 \times 0+3 y=10$
$\Rightarrow y=10 / 3$
$x=0, \quad y=10 / 3$
Putting $y=0$ in equation (ii), we get:
$\Rightarrow 2 x+3 \times 0=10$
$\Rightarrow x=5$
$x=5, \quad y=0$
Use the following table to draw the graph.
Draw the graph by plotting the two points $C(0,10 / 3)$ and $B(5,0)$ from table.
The two lines intersects at point $\mathrm{B}(5,0)$.
Hence $x=5, y=0$ is the solution