Question:
Solve the following systems of equations:
$\frac{2}{x}+\frac{5}{y}=1$
$\frac{60}{x}+\frac{40}{y}=19, x \neq 0, y \neq 0$
Solution:
The given equations are:
$\frac{2}{x}+\frac{5}{y}=1$$\ldots(i)$
$\frac{60}{x}+\frac{40}{y}=19 \ldots(i i)$
Multiply equation $(i)$ by 8 and subtract (ii) from equation (i), we get
$-\frac{44}{x}=-11$
$\Rightarrow x=4$
Put the value of $x$ in equation $(i)$, we get
$\Rightarrow \frac{2}{4}+\frac{5}{y}=1$
$\Rightarrow \frac{5}{y}=1-\frac{2}{4}$
$\Rightarrow \frac{5}{y}=\frac{1}{2}$
$\Rightarrow y=10$
Hence the value of $x=4$ and $y=10$.