Solve the following systems of equations:

Question:

$\int \sqrt{1+\sin x} d x$

Solution:

Let $\mathrm{I}=\int \sqrt{1+\sin x} d x$

$=\int \sqrt{\left(\sin ^{2} \frac{x}{2}+\cos ^{2} \frac{x}{2}+2 \sin \frac{x}{2} \cos \frac{x}{2}\right)} d x$

$=\int \sqrt{\left(\sin \frac{x}{2}+\cos \frac{x}{2}\right)^{2}} d x=\int\left(\sin \frac{x}{2}+\cos \frac{x}{2}\right) d x$

$=\int \sin \frac{x}{2} d x+\int \cos \frac{x}{2} d x=-2 \cos \frac{x}{2}+2 \sin \frac{x}{2}+C$

$=2\left(\sin \frac{x}{2}-\cos \frac{x}{2}\right)+C$, where $C$ is a constant

Therefore,

$\mathrm{I}=2\left(\sin \frac{x}{2}-\cos \frac{x}{2}\right)+\mathrm{C}$

Leave a comment