Question:
Solve the following systems of equations:
$\frac{5}{x+y}-\frac{2}{x-y}=-1$
$\frac{15}{x+y}+\frac{7}{x-y}=10$
Solution:
The given equations are:
$\frac{5}{x+y}-\frac{2}{x-y}=-1$
$\frac{15}{x+y}+\frac{7}{x-y}=10$
Let $\frac{1}{x+y}=u$ and $\frac{1}{x-y}=v$ then equations are
$5 u-2 v=-1 \ldots(i)$
$15 u+7 v=10 \ldots(i i)$
Multiply equation $(i)$ by 7 and equation $(i i)$ by 2 and add both equations, we get
Put the value of $u$ in equation $(i)$, we get
$5 \times \frac{1}{5}-2 v=-1$
$\Rightarrow-2 v=-2$
$\Rightarrow v=1$
Then
$\frac{1}{x+y}=\frac{1}{5}$
$\Rightarrow x+y=5$
$\frac{1}{x-y}=1$
$\Rightarrow x-y=1$
Add both equations, we get
Put the value of $x$ in first equation, we get
$3+y=5$
$\Rightarrow y=2$
$\Rightarrow y=2$
Hence the value of $x=3$ and $y=2$.