Question:
Solve the following systems of equations:
$\frac{5}{x-1}+\frac{1}{y-2}=2$
$\frac{6}{x-1}-\frac{3}{y-2}=1$
Solution:
The given equations are:
$\frac{5}{x-1}+\frac{1}{y-2}=2$
$\frac{6}{x-1}-\frac{3}{y-2}=1$
Let $\frac{1}{x-1}=u$ and $\frac{1}{y-2}=v$ then equations are
$5 u+v=2 \ldots(i)$
$6 u-3 v=1 \ldots(i i)$
Multiply equation $(i)$ by 3 and add both equations, we get
Put the value of $u$ in equation $(i)$, we get
$5 \times \frac{1}{3}+v=2$
$\Rightarrow v=\frac{1}{3}$
Then
$\frac{1}{x-1}=\frac{1}{3}$
$\Rightarrow x-1=3$
$\Rightarrow x=4$
$\frac{1}{y-2}=\frac{1}{3}$
$\Rightarrow y-2=3$
$\Rightarrow y=5$
Hence the value of $x=4$ and $y=5$.