Question:
Solve the following systems of equations:
$\frac{1}{5 x}+\frac{1}{6 y}=12$
$\frac{1}{3 x}-\frac{3}{7 y}=8, x \neq 0, y \neq 0$
Solution:
The given equations are:
$\frac{1}{5 x}+\frac{1}{6 y}=12$$\ldots(i)$
$\frac{1}{3 x}-\frac{3}{7 y}=8$...(ii)
Multiply equation $(i)$ by $\frac{3}{7}$ and equation (ii) by $\frac{1}{6}$, add both equations, we get
$\frac{3}{35 x}+\frac{3}{42 y}=\frac{36}{7}$
Put the value of $x$ in equation $(i)$, we get
$\frac{1}{\frac{5 \times 89}{4080}}+\frac{1}{6 y}=12$
$\Rightarrow \frac{1}{6 y}=\frac{1260}{445}$
$\Rightarrow y=\frac{89}{1512}$
Hence the value of $x=\frac{89}{4080}$ and $y=\frac{89}{1512}$